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We have conducted further numerical experiments on two-dimensional fully
compressible convection in an imposed vertical magnetic field and interpreted the
results by reference to appropriate low-order models. Here we focus on streaming
instabilities, involving horizontal shear flows, which form an important mechanism for
the breakdown of steady convection in relatively weak fields for boxes of sufficiently
small aspect ratio. While these shearing modes can arise even in the absence of a field,
they will typically lead only to travelling and modulated waves unless there is a field
to provide a restoring force. For magnetoconvection a new and dramatic form of
pulsating wave appears after a complex sequence of secondary bifurcations.

1. Introduction

Fluid mechanics provides many examples where small-scale motion gives rise to
large-scale streaming flows. This process has been demonstrated experimentally for
turbulent convection in an annular container (Krishnamurti & Howard 1981) and has
been explored theoretically in a wide range of contexts. The underlying mechanism is
straightforward. Consider two-dimensional motion in a fluid layer with rolls
corresponding to a row of vortex tubes of alternating sign: if the rolls tilt they will
transport horizontal momentum towards the boundaries of the layer, generating a
sheared flow that enhances the tilt (Howard & Krishnamurti 1986). Thus there is a
potential instability, leading to solutions whose form depends upon the details of the
system. These streaming instabilities occur frequently in numerical studies of
compressible convection. As an illustration, we show some results for fully compressible
two-dimensional convection, driven by internal heating in a strongly stratified layer
with periodic lateral boundary conditions. The streaklines in figure 1 (a) correspond to
a mildly nonlinear steady solution which is stable. The pattern is mirror-symmetric
about vertical planes centred on the rising and falling plumes but there is no up-down
symmetry in the system. The mirror-symmetry is broken in a bifurcation that gives rise
to a pair of travelling waves; figure 1(b) shows a rightward travelling wave, in the
frame with no net horizontal momentum. The horizontally averaged velocity represents
a sheared flow with vorticity corresponding to a clockwise sense of motion. As a result,
one roll is boosted while the other is almost suppressed. Similar behaviour is found in
Boussinesq convection too. For the standard Rayleigh-Bénard problem, rolls retain
point-symmetry about their centres and so the pattern cannot travel. Thus the
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FIGURE 1. Symmetry-breaking and streaming instabilities. Streaklines for compressible convection
driven by internal heating. (g) Steady convection: the solution possesses mirror symmetry about
vertical planes. (b) A rightward travelling wave: the symmetry is broken and there is a net shear in
the velocity.

analogue of the travelling wave is steady tilted convection, with a mean streaming
motion that enhances each alternate roll (Howard & Krishnamurti 1986; Proctor &
Weiss 1993; Matthews et al. 1993).

Travelling waves, like steady tilted convection, arise from a stationary (pitchfork)
bifurcation. The mirror-symmetry of the original steady solution may also be broken
in an oscillatory (Hopf) bifurcation, giving rise to pulsating waves (Landsberg &
Knobloch 1991; Proctor & Weiss 1993). These waves are periodic and possess a
symmetry such that advancing the solution half a period in time is equivalent to
reflection about the original mirror-planes. This spatiotemporal symmetry ensures that
there is no net drift over a full period of the oscillation. Pulsating waves have also been
described as ‘direction-reversing travelling waves’ (Landsberg & Knobloch 1991) or,
more straightforwardly, as ‘sloshing’ (Lantz & Sudan 1994; Lantz 1994). Breaking
their spatiotemporal symmetry gives rise to modulated waves, which are periodic in a
uniformly moving frame. Conversely, travelling waves may undergo an oscillatory
bifurcation that gives rise to modulated waves, which may themselves develop into
pulsating waves after a further global bifurcation (Matthews et al. 1993).

There has been a recent surge of interest in streaming instabilities — together with the
development of travelling waves, modulated waves, pulsating waves and yet more
complicated time-dependent behaviour — in a variety of contexts. Ordinary Boussinesq
convection has been investigated with ever-increasing precision (Deardorff & Willis
1965; Howard & Krishnamurti 1986; Finn 1993 ; Prat, Massaguer & Mercader 1993;
Julien, Brummell & Hart 1994). Studies of compressible convection, with an
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astrophysical motivation, have also revealed complicated shearing motions (Hurlburt,
Toomre & Massaguer 1984; Ginet & Sudan 1987). Since shear flows suppress
convective transport the streaming instability might be exploited to reduce heat losses
in plasma devices such as tokamaks (Drake et al. 1992; Finn, Drake & Guzdar 1992).
Modulated waves appear in Taylor—Couette flow (Coughlin & Marcus 19924, b) as well
as for convection in a rotating system (Schnaubelt & Busse 1992). So the development
of streaming motion should be significant both for meteorology and for the study of
planetary atmospheres.

Compressible magnetoconvection provides the cleanest demonstration of transitions
between steady convection, travelling waves, modulated waves, pulsating waves and
chaotic oscillations. If mirror symmetry is imposed by adopting fixed lateral
boundaries, as in earlier Boussinesq investigations (Weiss 1981 ; Proctor & Weiss 1982),
then stable steady solutions can be found. However, such solutions are likely to become
unstable if the boundary conditions are relaxed. In this paper we describe the
development of these streaming instabilities; in contrast to previous work, we adopt
horizontally periodic boundary conditions and consider a fully compressible fluid
layer.

The original motivation for studying this problem was to understand convection in
sunspot umbrae, which are permeated by a strong vertical magnetic field (Thomas &
Weiss 1992). The great majority of work undertaken has assumed two-dimensional
flows and fields (see the reviews by Hughes & Proctor 1988 ; Weiss 1991 ; Proctor 1992),
although some three-dimensional computations have been completed recently
(Matthews 1993 ; Matthews, Proctor & Weiss 1994 5). Such idealized investigations are
an essential counterpoint to other, more observationally oriented numerical simu-
lations (e.g. Nordlund & Stein 1990; Grossmann-Doerth et al. 1994). Hurlburt et al.
(1989, hereinafter referred to as Part 1) considered a relatively shallow layer, in order
to isolate the interaction of compressibility and strong magnetic fields. As in the
equivalent Boussinesq problem, where the density and properties of the layer are
essentially independent of depth, the initial bifurcation to convection from the trivial
state can be oscillatory when the imposed magnetic field is sufficiently strong (for a
review of the Boussinesq problem see Proctor & Weiss 1982). In Part 1 the resulting
oscillatory motion was studied in the fully nonlinear regime; Weiss et al. (1990) have
also investigated both steady and oscillatory convection in much deeper layers, with a
view to understanding convection in the stratified umbra of a sunspot. The final paper
in this series (Part 3) will be concerned with behaviour when the imposed field is
horizontal; a similar configuration has been studied independently by Lantz & Sudan
(1994) and Lantz (1994).

In the present paper we remain, as in Part 1, with a relatively shallow layer. First of
all, we consider briefly the case when the field strength is just above the critical value
for an initial oscillatory bifurcation to occur, and investigate the interactions between
steady convection, travelling waves and standing waves at relatively low amplitudes.
Then we focus on the situation in which the imposed field is much weaker, so that there
is, typically, a stationary bifurcation from the static, conducting solution. Of particular
interest is the question of how the steady convection rolls that arise at the primary
bifurcation lose stability to time-dependent motion. This process depends on the aspect
ratio of our computational domain. For wider boxes, resonant interactions between
modes with different horizontal scales lead to travelling waves and modulated waves
—as discussed for non-magnetic convection by Jones & Proctor (1987), Proctor &
Jones (1988) and Julien (1991). Much more interesting is the scenario in narrower
boxes, with fields that are much weaker than those considered in Part 1. Now we find
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the frequent occurrence of a new type of periodic solution, involving vigorous
oscillatory horizontal streaming motion (Weiss 1989). In these solutions the Lorentz
force ensures that the sheared horizontal velocity reverses exactly after half a period,
so they possess the spatiotemporal symmetry of pulsating waves. The transition from
steady cellular convection to pulsating waves involves intermediate branches of
travelling waves and modulated waves. Similar behaviour has been found for
convection with a horizontal field, in the anelastic approximation (Lantz & Sudan
1994; Lantz 1994), and analogous transitions can also be identified in Boussinesq
magnetoconvection (Rucklidge & Matthews 1993, 1994; Matthews et al. 1993). In the
absence of a magnetic field such vigorous pulsating waves appear to be less common.

It is hard when conducting numerical experiments to be sure that one has captured
all the different types of behaviour. Crucial sequences of transitions frequently appear
over a very small range of parameters and, above all, it is impossible to observe
unstable branches directly. To establish the bifurcation structure it is therefore essential
to construct low-order systems of ordinary differential equations which reproduce the
changes that are observed and can be studied in much greater detail. Such model
systems can be obtained, for instance, from a severely truncated representation of the
variables in the partial differential equations. In the case of pulsating waves an
appropriate model is readily to hand. It turns out that such a simple system can indeed
be constructed for the Boussinesq problem (Rucklidge & Matthews 1993, 1994;
Matthews et al. 1993). While the differing symmetries of compressible and Boussinesq
magnetoconvection do not allow a complete analogy, there is a correspondence
between the two problems which allows the model to be used in a slightly adapted form
that captures all the principal transitions.

The paper is organized as follows: in §2 we formulate the problem and summarize
the results of linearized stability theory. Section 3 is concerned with behaviour at
moderate field strengths, near the point of transition from an oscillatory to a stationary
primary bifurcation; it also includes a brief discussion of drift phenomena in wide
boxes, associated with coupling between two- and four-roll convection modes. Section
4 deals with narrower cells and presents our most important results. Here the streaming
instabilities are prominent and pulsating waves appear in a dramatic form. The
associated bifurcation sequence, involving branches of travelling waves and modulated
waves, can also be established. This bifurcation structure is related to that for a low-
order system of ordinary differential equations in §5. We conclude in §6 by connecting
our results to very recent three-dimensional numerical experiments.

2. Linear stability

We consider two-dimensional magnetoconvection in a perfect monatomic gas, in the
presence of an imposed vertical magnetic field. The model problem is identical with
that discussed in Part 1. Motion in the region {0 < x < A; z, < z < z,+ 1} is governed
by the dimensionless equations

P=pT, %§=—V-(pu), (2.1)

0B .
V-B=0, —=VxuxB)+{KV'B, (2.2)
9(pu)=—V-(puu—FBB)—V(P—F%FlBlz)—F(m+1),0z'+V-‘t 2.3)

ot
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Here K is a dimensionless thermal conductivity and ¢, K is the dimensionless magnetic
diffusivity, while 7 is the stress tensor for a Newtonian fluid with constant shear
viscosity w; the Prandtl number o = uc,/K is thus uniform. The quantity F was used
in Part 1 as a measure of the field strength; in the present paper we use instead the
‘plasma 4, namely f = 2(z,+1)™*!/Fz™*, a measure of the ratio between gas pressure
and magnetic pressure. The other symbols have their usual meanings (see Part 1). We
take this opportunity to correct an erroneous formulation of the equation of motion
in Part 1 (the numerical scheme used in that paper is, however, correct), as well as
transcription errors in equations (7) and (8) of Weiss et al. (1990). (These errors did not
affect the computational results.)

We adopt the standard illustrative (free) boundary conditions at the top and bottom
of the layer, together with periodic lateral boundary conditions. Thus 7' = z,,z,+ 1 at
the upper and lower boundaries, respectively, while u, = 0u,/0z = B, =0. The
conditions on the magnetic field aim to reproduce conditions at the top of the solar
atmosphere while making minimal demands on knowledge of the conditions outside
the layer. All quantities are assumed to be periodic in x with period A. For this paper
we again take a static reference atmosphere with z, = } and a polytropic index m = 1.
While the density contrast between the top and bottom of this layer is a moderate 1.63,
there is some variation of physical quantities with z. We use a circumflex to denote the
value of a quantity at the middle of this layer (z = 2). The ratio { of the magnetic to
the thermal diffusivity is proportional to the density, so that E=v/ 2¢,. We set o =
¢=0.1. Then the state of the system is fixed by specifying the aspect ratio A, the
Rayleigh number R and either the Chandrasekhar number Q or the plasma beta ,6’

given by
s 75, [(128\R
R‘4P’ﬂ‘(9)§‘ ¢

We shall study behaviour in a parameter range where instability first sets in at a
stationary bifurcation as R is increased. The bifurcation value R® depends both on A
and on Q (or f). Figure 2 shows R® as a function of Q for A = 1, 2 and 4 (the values
used in this paper) calculated with a program developed by Cattaneo (1984). The
values of R are only 10-15% higher than those for a Boussinesq fluid, since the layer
is weakly stratified. The magnetic field has no influence if Q < 1 and in the Boussinesq
limit convection then occurs first for A = 2 4/2, so it is not surprising that the values of
R® for A = 2, 4 are almost equal, with the latter slightly less, while R is significantly
greater for A = 1. The values of R® increase ‘with increasing Q and narrower cells are
preferred when Q is large. For Q > 300, R is least for A =1. When Q > 1 the
bifurcation value R' is approximately proportional to Q and the bifurcation sets are
therefore parallel to lines of constant /)’ which are indicated in the figure. In this limit
we find that the stationary bifurcations for A = 1, 2 and 4 occur near g = 210, 310 and
720, respectively.

If we restrict our attention to square rolls with A = 2, we can distinguish three
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FIGURE 2. Linear stability: R as a functionof Q forA=1,2and 4, o = £=0.1, z, =t Values
of § are indicated on the sloping lines, along which ﬂ is constant.

different regimes. In the absence of a magnetic field convection sets in at R©® =890,
and R® = 1000 when Qx5 (,6’ 2800). Thus magnetic effects are only a small
perturbation for ﬂ > 2048. At the other extreme, for Q > 50 (ﬂ < 540), the stationary
bifurcation is preceded by an oscillatory bifurcation, giving rise to branches of standmg
wave and travelling wave solutions (cf. Part 1, figure 1). Thus the magnetic field is
dominant for ﬁ‘ < 512. Tt is with the intermediate range, 512 < ﬁ‘ < 2048, that this
paper is mainly concerned.

The numerical experiments described here were carried out using the code described
in Part 1, which relies on a two-step Lax—Wendroff scheme (Graham 1975; Hurlburt
& Toomre 1988). For most of the runs sufficient accuracy was obtained with 40 mesh
intervals in the z-direction. Some results have been confirmed using a more
sophisticated code (Matthews ef al. 1994 a). A complete list of the runs carried out and
reported on here is given in the Appendix.

As a dimensionless measure of convective efficiency in the nonlinear regime we use
the normalized superadiabatic heat transport, given by the Nusselt number

N =2F,/K—1, (2.6)

where Fj is the total energy flux. In the absence of convection N = 1. An alternative
measure is the spatially averaged kinetic energy density <ip|ul?).

3. Steady convection, travelling waves and pulsating waves

In the majority of this section (except for §3.3) we describe nonlinear solutions
obtained for A = 2. In the weak field limit we expect to find steady convection in rolls
with square cross-section (cf. Hurlburt et al. 1984). These steady solutions, like the
standing waves that appear when the field is strong, possess mirror-symmetry about
vertical planes with a spacing A that separate the rolls. The mirror-symmetry of
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FIGURE 3. (a) Streaklines and field lines for a mirror-symmetric steady solution with A = 2, R = 2000
and £ = 2048. (b) The same, but for an asymmetric leftward travelling wave with § = 1024,

a steady solution can be broken in a stationary bifurcation, which gives rise to branches
of travelling wave solutions, or in an oscillatory bifurcation, which gives rise to pul-
sating waves, characterized by an alternating horizontal streaming flow and associated
reversals of the direction of drift of the cells (Proctor & Weiss 1993). Subsequent
bifurcations may lead to modulated waves. We provide examples of symmetry-breaking
bifurcations in the intermediate-field regime that are followed by the appearance of
travelling waves and of pulsating waves, and show how the former are related to
standing waves and to the oscillatory bifurcation from the static (trivial) solution.

3.1. Travelling waves and standing waves (R = 2000)

Convection sets in at a stationary (pitchfork) bifurcation when the field is weak and at
an oscillatory (Hopf) bifurcation when the field is strong. At the transition there is a
bifurcation of codimension two with a double-zero eigenvalue. For our choice of
parameters this multiple (Takens—Bogdanov) bifurcation occurs when ﬂ = 540 and

= 1900. We begin by investigating weakly nonlinear behaviour. Thus we set R = 2000
and study the effect of varying the magnetic field. It should be noted that the product
of Q0 and ﬂ is proportional to R, so that for fixed R only one of these parameters may
be independently varied.

In the strong-field regime there is a Hopf bifurcation at B =32, followed by
apitchfork bifurcationat § = 520. At the other extreme, for ,b’ > 1,wehave R ~ 2.25R®
and obtain steady convection with N = 1.899 and (} plu|*>) = 0. 196 Though the layer is
quite shallow, the effects of compressibility may be seen near the top of the layer, where
the sound speed v, = (yT)"? is least. At the top of the layer, although convection is
weak, the density drops locally to 8 % below its reference value of unity, while the
Mach number M = |u|/v, reaches a local maximum value of 1.15. As the imposed
magnetic field is increased, stable steady solutions persist up to 4 = 2048 (Q = 13.89);
their amplitude is only slightly reduced, so that N = 1.848, {3plul*> = 0.184. Streak
lines and field lines for this solution are illustrated in figure 3(a). There are vertical
planes of symmetry near x = 0, I whose location is determined by initial conditions.

For # = 1024 we find a transient steady solution with N = 1.77 which gives way to
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FIGURE 4. () Schematic bifurcation diagram, showing (N — 1) as a function of @, for A = 2, R = 2000.
As Q decreases the trivial static solution undergoes a Hopf bifurcation followed by stable standing
waves (SW), which give way to modulated waves (MW), travelling waves (TW) and finally to stable
symmetric steady convection (SS). (b) Bifurcation structure in the (@, R)-plane: the primary Hopf and
pitchfork bifurcations are indicated by full lines and secondary bifurcations are denoted by broken
lines. In region I the static state is stable; in region II there are stable steady solutions; SW are stable
in region III, MW in region IV and TW in region V. Hopf, pitchfork and saddle-node bifurcations
are denoted by H, p.f. and s-n respectively.

travelling waves. There is a substantial drop in heat transport to N = 1.185, with a
corresponding fall in kinetic energy, and the waves propagate with a velocity V =
0.0018. Figure 3(b) shows the velocity and magnetic field for a leftward propagating
wave. Note the loss of reflection symmetry and the predominance of the clockwise-
rotating roll. At ,6’ = 512 there is an unstable steady solution with N = 1.57, followed
by stable travelling waves with N = 1.15 and V' = 0.0043. Once again, the preferred
solution is much less effective at transporting heat. For /3 256, 128 there are stable
standing wave solutions (periodic oscillations with reversals of the flow) with an
amplitude that is very small. This is to be expected since we are close to the linear
stability boundary (near R = 1900) for these smallish values of ,6’

These results allow us to construct the bifurcation diagram in ﬁgure 4(a) As ,6’ is
increased for fixed R there is first a Hopf bifurcation at # = 32 giving rise to stable
standing waves and a pair of unstable travelling wave solutions. The branch of
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standing wave solutions loses stability in a secondary pitchfork bifurcation around
,6’ = 300, shedding a short branch of modulated waves which transfer stability to the
travelling waves. Although the modulated waves have not been found numerically,
they are necessary to effect the stability transfer, though the branch may be stable or
unstable. This pattern is familiar from Part 1. The pitchfork bifurcation from the trivial
solution at /? = 520 gives rise to unstable steady solutions on a branch that has a
turning point (corresponding to a saddle-node bifurcation) around ,[)’ 200. The
branch of travelling wave solutions finally meets the steady branch, which acquires
stability in a pitchfork bifurcation around /= 1500. Figure 4(b) shows the
corresponding bifurcation set in the (Q, R)-plane. This bifurcation structure is related
to that found for thermosolutal convection (Moore & Weiss 1990) but differs from
those obtained for the Takens-Bogdanov bifurcation with O(2) symmetry by
Dangelmayr & Knobloch (1987) owing to the presence of a saddle-node bifurcation on
the steady branch. Without this additional turning point we would expect to recover
the bifurcation structure found for narrow rolls with A = 1 and illustrated in figure
11(b) of Part 1.

For R = 1750 and ,3 = 830 (Q = 30), below the Takens—Bogdanov point in figure
4(b), we find a transient steady solution (N = 1.6) which gives way to stable travelling
waves. Thus travelling wave solutions exist in a region of the (3, R)-plane where linear
theory suggests that only steady solutions should occur. The line of secondary
pitchfork bifurcations emerges with a positive gradient from the Takens-Bogdanov
point; at this stage the pitchfork bifurcation is on the lower branch of the steady-state
curve. Later, however, as shown in figure 4(q) it lies on the upper portion, and so the
line must touch the line of saddle-nodes for the steady branch. The simplest diagram
compatible with the results is shown in figure 4 (b). This complicated structure will be
discussed in greater detail in Part 3, since it is also to be found for imposed horizontal
fields.

3.2. Steady convection and pulsating waves

We now consider what happens for larger values of R. The strong-field regime
(B < 128) investigated in Part 1 yielded solutions that are typically oscillatory. For
weaker field (4 > 2048) steady solutions are recovered but the transition between these
regions is marked by complicated spatiotemporal behaviour. For ,3 256 the low-
amplitude standing waves found with R = 2000 disappear when R = 4000. Instead,
there is a transient steady solution which is followed by aperiodic oscillations that lack
reflection symmetry. Similar behaviour is found for R = 8000 with ,6’ 256, 512 and
1024. These chaotic solutions seem to have developed from modulated waves but they
share some features with the pulsating waves to be described below and in §5.

Stable steady convection rolls appear again in the weak-field regime, for R= 8000
and f# > 2048. For this Rayleigh number there is a pitchfork bifurcation at f=
358, the transient steady solutions at j =256, 512 have N=1.9, 3.2 respectlvely,
and N = 3.5 for ,6’ > 2048. So the steady branch retains the structure sketched in
figure 4(a).

We have also computed steady solutions as Ris increased for a fixed imposed field
such that ﬂ 2048. The pitchfork bifurcation is at R = 1050 and N increases
monotonically with R. Figure 5(a) shows the steady solution for R = 32000 with N =
5.67. Compared with the solution in figure 3(a) the flow is more concentrated in the
sinking plumes. Magnetic flux is confined to sheets surrounding the planes of symmetry
and the peak field strength is 20 times the imposed flux density. The enhanced magnetic
pressure causes partial evacuation of the flux sheets, where the density is locally
reduced by 24 %.
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FIGURE 5. () Steady magnetoconvection at a higher Rayleigh number (A = 2, # = 2048, R = 32000).
(b) Pulsating wave at R = 64000: streamlines and fieldlines at intervals of approximately ;P. The first
and last panels are related by the broken mirror symmetry. (The spatiotemporal symmetry is clearer
for u than for B since the field lines are arbitrarily chosen.)

Doubling the Rayleigh number to R = 64000 yields the periodic solutions illustrated
in figure 5(b). These oscillations are unlike anything described in Part 1, since the
bifurcation breaks the mirror symmetry of figure 5(a) so that the solutions have the
property that the flows and fields at an interval of half a temporal period are related
by the broken mirror symmetry. These solutions are examples of pulsating waves,
which occur generically at such a bifurcation (Landsberg & Knobloch 1991 ; Proctor
& Weiss 1993). Unfortunately, these particular waves appear just as discretization
errors are becoming significant. We have repeated the calculation after doubling the
number of mesh intervals in each direction and the oscillations persist at a reduced
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FIGURE 6. Asymmetric two-roll travelling wave for A = 4, § = 8192, R = 8000.

amplitude. At this value of R the peak value of the Mach number M,,,, = 1.58 and
there is a possibility that shocks will form. Indeed, we know from highly accurate
studies of two-dimensional compressible convection in the absence of a magnetic field
that there are aperiodic oscillations of the general form shown here, accompanied by
localized shocks at the top of the layer (Cattaneo, Hurlburt & Toomre 1990). Our code
cannot represent such behaviour but we believe that our results are qualitatively
correct and that the pulsating waves develop into the more vigorous aperiodic
oscillations found by Cattaneo et al. (1990). This is not the only route leading to
oscillations with this symmetry; an alternative is discussed in §4 below.

3.3. Interactions between two-roll and four-roll solutions (A = 4)

Previous studies of steady compressible convection and magnetoconvection have set
A = 4 or 3 (Hurlburt et al. 1984 ; Hurlburt & Toomre 1988). We note from figure 2 that
the values of R® for A =2, 4 are very close for £ > 2048 and that there is a
codimension-two bifurcation at ﬂ = 1953, where R = 905 for either aspect ratio. We
have therefore investigated the effect of relaxing the lateral constraints by doubling the
aspect ratio to A = 4. Then we expect to find resonant interactions between two-roll
and four-roli solutions in the weak-field regime. We describe these interactions briefly,
though the interesting phenomena do not involve the magnetic field in an essential way
and can also be found for non-magnetic convection.

We first set ,6‘ 8192 and obtain solutions for different values of R. The pitchfork
bifurcations for A = 2 and A = 4 occur at R® =926 and R® = 962. For aspect ratio
A = 4 there is a stable steady solution at R = 2000 with two rolls separated by vertical
planes of symmetry. At R = 4000 there is a transient steady solution which gives way
to asymmetric two-roll travelling waves. Similar travelling waves can also be found at
R = 8000 (figure 6), but with different initial conditions it is possible to obtain four
mirror-symmetric rolls, identical with those computed for A = 2 in §§3.1 and 3.2. The
four-roll steady solutions are stable to long-wavelength perturbations but careful
inspection shows that the travelling waves are unstable to finite-amplitude pertur-
bations. On adding a four-roll perturbation they develop into mildly modulated waves.

Apparently, the four-roll branch bifurcates supercritically from the trivial solution
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FIGURE 7. Pulsating wave for A = 1, R = 8000, # = 512. Solutions at equal intervals over half a
period; the first and last are related by the spatiotemporal symmetry.

first and is followed by the two-roll branch. The latter is initially unstable to short-
wavelength perturbations but soon gains stability in a pitchfork bifurcation, only to
lose stability again in a second pitchfork that gives rise to travelling waves. Finally, the
travelling waves undergo a subcritical Hopf bifurcation to give modulated waves.
This multistable combination — with stable four-roll steady convection, stable two-
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roll travelling waves and stable modulated waves —is found at R = 8000 throughout
the weak-field regime, from 4 =2 (Q =0.11) to 4 =2048. So it is apparently
produced by purely hydrodynamic effects. Some understanding of the nature of the
possible solutions near the multiple bifurcation point for the two-roll solution with
horizontal wavelengths in the ratio 1:2 can be gained from the study of appropriate
amplitude equations (see e.g. Dangelmayr 1986; Jones & Proctor 1987; and a very
detailed study by Julien 1991). These models do not possess enough structure to
account for the existence of multiple stable solutions, and further work is required
before the bifurcation structure can be explained in terms of a low-order model.

When the magnetic field is dynamically important, behaviour is quite different. For
,8 = 512 the solution is aperiodic and displays two, three and four rolls at different
phases. Results for ,8 = 128 and § = 32 are likewise aperiodic, with irregular spatial
structure and a characteristic timescale that decreases as the imposed field is increased.
Since the corresponding solutions for A = 2 are themselves aperiodic, this complicated
behaviour is to be expected.

4. Streaming instabilities (A = 1)

We now come to a form of motion that has no parallel in the investigations of Part 1,
since the motion is heavily influenced by large-scale horizontal shear. These solutions
are predominant when the aspect ratio of our periodic box is relatively small; the extent
to which they remain relevant for wider boxes will be discussed below. It turns out that
reducing the aspect ratio imposes lateral constraints that lead to richer dynamical
behaviour. When A = 4 the fundamental two-roll solution interacts with the four-roll
first harmonic but when A = 1 the mode with two pairs of stacked rolls is excited more
readily than the first harmonic. Interactions between two-roll and stacked-roll
solutions lead to horizontal streaming and vigorous pulsating waves. The streaming
shears the magnetic field to such an extent that the Lorentz force becomes significant
even in the weak-field regime. Thus there is a complicated range of phenomena to be
identified and explained. In this section we describe numerical experiments: first we
survey behaviour found as ,8 is varied for a fixed Rayleigh number, then we focus on
transitions as R (or ,8) is increased for fixed Q. In §5 we shall develop low-order models
in order to interpret these numerical results.

4.1. Streaming and pulsating waves

Once again we set R = 8000. For <256 the only stable nonlinear solutions are
standing waves, as described in Part 1. There is a pitchfork bifurcation from the static
solution at 4 = 342 and at § = 512 we find a transient steady solution with N = 1.68,
which gives way to low-amplitude pulsating waves with 1.00 < N < 1.18. The new
solution is periodic and retains a spatiotemporal symmetry corresponding to reflection
in vertical planes after advancing time by half a period. Figure 7 shows how the velocity
and magnetic field vary during a half-cycle. This pulsating wave differs from the one
displayed in figure 5, although it has the same symmetries (Proctor & Weiss 1993), in
that motion is dominated by a single asymmetric eddy whose sense of rotation is
reversed. The eddy is tilted and is associated with a sheared horizontal flow whose
direction alternates between successive half-cycles.

Physically, we can interpret the sequence as follows. The symmetric two-roll solution
is unstable to perturbations that tilt the rolls. Suppose they are tilted initially to the
right. Then the rising plumes transport rightward momentum upwards, while the
sinking plumes carry leftward momentum downwards. Thus the tilted rolls generate a
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streaming motion, with u, positive (negative) at the upper (lower) boundary.
(Velocities are measured relative to the frame in which there is no net horizontal
momentum.) Since du,/dz < 0 this sheared flow has negative vorticity; it therefore
enhances the clockwise-rotating eddy and suppresses the anticlockwise eddy. The
resulting flow distorts the magnetic field until the Lorentz force is strong enough to halt
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FIGURE 8. Pulsating wave and streaming: solutions for A = 1, R= 8000, g = 4096, extended over two
wavelengths to clarify their structure. The panels are separated by equal intervals over a half-period.
Note the long quiescent, magnetically dominated phase and the rapid burst of activity.

it, whereupon the cycle is repeated in reverse. This description shows that we are

dealing with a new type of hydromagnetic oscillation (Matthews et al. 1993),
Behaviour at higher Rayleigh numbers is complicated by interactions between

pulsating waves and standing waves. They appear most clearly in the strong-field
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reglme discussed in Part 1. For /)’ 64 there are stable standing waves at R = 8000 and
= 16000. Between this value and R = 32000 these solutions must lose their mirror

symmetry in a Hopf bifurcation, since quasi-periodic modulated waves are found at the
higher value (see figure 8a of Part 1). The latter are of mixed-mode type, combining
features of standing waves and pulsating waves but lacking the symmetries of either.
Doubling the Rayleigh number to R = 64000 yields the aperiodic modulated waves
illustrated in figures 8(b) and &(c) of Part 1. As the imposed field is decreased these
interactions occur at lower Ray1e1gh numbers: for /)’ 128 the standing waves at R =
8000 develop into asymmetric quasi-periodic oscillations at R = 16000 and aperiodic
motion at R = 32000, for ﬂ = 512 aperiodic modulated waves are already present
at R = 16000. i

At R = 8000 there are pulsating waves for 512 < £ <2'® (222 = Q > 1.74). The
form of these solutions changes as the imposed magnetic field is decreased. For £ =
1024 the pulsating wave solution is similar to that described above but it becomes
unstable to perturbations that break its spatiotemporal symmetry, giving rise to a
modulated wave which is periodic in a uniformly moving frame. (Increasing the
Rayleigh number to R = 10000 yields an aperiodically modulated wave — see §4.2
below.) At /)’ 2048 the modulated wave seems to have undergone a period-doubling
bifurcation by R = 8000. Stable pulsating waves appear once more at § = 4096 but
now they are more spasmodic and have a more dramatic form, as shown in figure 8.
The single eddy develops into vigorous streaming motion, which Kkills the convective
rolls and rapidly sweeps the field aside until it is almost horizontal. Although the
imposed field is weak (Q = 28) the distorted field eventually becomes strong enough to
reverse the streaming motion. Next comes a quasi-static phase, with a weak reversed
flow, during which the field lines slowly regain an approximately vertical orientation,
while the temperature is horizontally stratified. Then there is a burst of activity, which
1s illustrated in more detail in figure 9: convection rolls develop rapidly and tilt to give
a single reversed eddy, after which the cycle proceeds as before but with an oppositely
directed shear. Once again the oscillations rely on the curvature force exerted by the
magnetic field. As the imposed field is progressively reduced, to /)’ = 2%, the same
pattern persists. The oscillations grow more intermittent, with longer intervals between
the bursts of activity, and the field has to be amplified by a larger factor before the
motion is reversed.

4.2. Pulsating waves and modulated waves

In order to understand the development of pulsating waves we need to start from the
static solution and to follow the bifurcation sequence as the Rayleigh number is
increased. For the initial bifurcation at R we choose a field of intermediate strength;
in order to keep clear of the line of pitchfork bifurcations — which follow a line of
constant /)’ in figure 2 ~ it is preferable to fix Q rather than /)’ We choose the line that
passes through the point with R = 8000, /)’ 1024 and therefore set Q = 111.1. Then
the initial bifurcation at R‘© = 4795 is at a safe distance from the Takens-Bogdanov
bifurcation at @ = 230, R = 6900.

At R = 4900 we obtain a low- amplltude steady solution, which remains stable up to

= 5106 (N = 1.0154). For R = 5100 it is also possible to find a stable travelling wave
solutlon (N = 1.0465) which can be followed down to R = 5000. It is 1mp0rtant to note
that these waves arise in a quite distinct manner from the travelling waves in the strong-
field case; the latter appear at a primary Hopf bifurcation from the static state while
the former arise through a pitchfork bifurcation from a steady solution, as discussed
below. For R = 5200 the only attracting solution is a modulated wave (1.041 < N <
1.056) which fluctuates about the unstable travelling wave without reversing the
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FiGure 10. Bifurcation diagram for A = 1, 0 = 111.1. The trivial solution loses stability in a pitchfork
bifurcation, giving a stable SS; a subcritical secondary pitchfork gives rise to TW, which gain stability
in a saddle-node bifurcation but lose it again in a Hopf bifurcation, leading to MW stability is
transferred to pulsating waves (PW) at a homoclinic gluing bifurcation.

velocity. Stable modulated waves persist to R = 5400. At R = 5500 there is a chaotic
modulated wave, with irregular reversals of the flow and a mean period P = 152. At

= 5600 there is again a modulated wave, with periodic reversals and P = 138. For
R 6000 we find a stable pulsating wave with spatiotemporal symmetry and a period

= 112; this can be followed up to R = 7000 (1.00 < N < 1.15, P = 91). At R = 8000
the pulsating wave gradually loses its symmetry and develops into a modulated wave,
as mentioned in §4.1 above. The modulated wave is periodic in a moving frame but
— unlike the wave at R = 5400 — there are reversals of the flow. Finally, at R = 10000
there is a transient pulsating wave which eventually becomes chaotic.

This sequence of numerical experiments allows us to construct the bifurcation
diagram in figure 10. The initial stationary bifurcation is followed by a branch of steady
solutions with mirror-symmetric rolls. These solutions are initially stable but their
symmetry is broken in a subcritical pitchfork bifurcation at R &~ 5150, which gives rise
to travelling waves. The branch of travelling waves gains stability in a saddle-node
bifurcation at R ~ 4950 but loses it again in a Hopf bifurcation at R ~ 5150, shedding
a branch of modulated waves. The modulated waves continue to R & 5500, where there
is a homoclinic gluing bifurcation. This global bifurcation is associated with
complicated chaotic behaviour (Matthews et al. 1994 a). From it emerges a branch of
pulsating waves with eddies that reverse direction after each half-period, and a period
P that decreases rapidly with increasing R. These waves can be followed up to R =
10000 but around R = 8000 they undergo a symmetry-breaking bifurcation that
gives rise to a different type of modulated wave. Subsequently there must be other
bifurcations leading to more exotic oscillatory behaviour but those developments need
not concern us here.

Figure 10 shows a sequence of bifurcations, starting from the static solution and
ending with pulsating waves. This whole sequence can be interpreted by relating it to
the low-order model systems that we shall discuss in §5.

4.3. Symmetry-breaking in the kinematic regime (Q < 1)

Previous studies of nonlinear compressible convection in the absence of a magnetic
field have reported a variety of time-dependent behaviour for aspect ratios that are
small (Hurlburt et al. 1984 ; Ginet & Sudan 1987 ; Lantz 1994). Hurlburt et al. illustrate
an aperiodic solution, with vigorous streaming but no reversals of the flow, for a
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strongly stratified layer with A = 0.5. Ginet & Sudan made a systematic study of
convection, again in a strongly stratified layer (z, = 0.14, m = 1.49) with A = 1. They
found steady, periodic, quasi-periodic and chaotic behaviour, with streaming and a
single asymmetric eddy but no reversal of the flow. They adopted the anelastic
approximation and varied the Rayleigh number by keeping K constant and reducing
o; although we cannot make a direct comparison between our results and theirs, it is
of interest to discover how far their solutions relate to the behaviour that we have
described above.

We have therefore investigated convection with A =1 and Q = 0.1085 (a value
chosen so that £ = 22° at R = 8000). Then the initial bifurcation at R® = 3204 gives
I'lSC to mirror-symmetric rolls. With our code we find a feebly convecting solution at

= 3160 with N = 1.014. Close inspection shows that the streaklines are very slightly
asymmetrlc At R =3200 there are slowly drifting, slightly asymmetric travelling
waves (N = 1.016) and by R = 3300 the asymmetry and drift are more pronounced.
We infer that there is agam a subcritical pitchfork bifurcation from the branch of
s}eady solutions giving rise to a branch of travelling waves with a turning point at

~ 3100 < R®. Around R = 3350 there is a Hopf bifurcation, yielding modulated
waves. As R is further increased, these waves become intermittent, with short bursts of
activity separated by long quiescent intervals. Once again, convective rolls develop into a
single asymmetric eddy, which generates a sheared flow that gradually decays; but now
the magnetic field is too weak to reverse the streaming motion. The modulated waves
persist to R = 6000 (1.00 < N < 1.18). Apparently there is a second Hopf bifurcation
around R = 7000 at which the travelhng waves regain stability. At R = 8000 the
modulation gradually decays to give a travelling wave with N = 1.026. Thus there is a
marked contrast between the travelling wave for A =1 and the steady solution for
A = 2, which has a reasonable amplitude (N = 3.6) at R = 8000. For R = 10000 we
again find a travelling wave with slowly decaying modulation but at R = 12000 there
is a modulated wave with long-period oscillations in the Nusselt number. At R =
16000 this slow modulation dies away and is replaced by rapid modulation of the
drifting wave.

From these results we surmise that the transition from steady to periodic behaviour
reported by Ginet & Sudan (1987) is in fact a transition from travelling waves to
modulated waves, and that it is preceded by a transition from steady convection to
travelling waves, with a consequent loss of symmetry (cf. Lantz 1994). Indeed,
symmetry considerations preclude a direct transition from steady mirror-symmetric
rolls to modulated waves (Proctor & Weiss 1993). The subsequent transitions from
modulated waves to quasi-periodic modulation and to chaotic motion involve two very
disparate timescales. We are unable at present to clarify the processes involved, since
these transitions occur at Rayleigh numbers in the range 14 < R/R® < 80, which are
higher than any that we have so far investigated.

It is noteworthy that the pulsating waves, with their reversals of the shear, seem only
to be accessible from the travelling waves when the field is sufficiently strong. The key
to the difference is the nature of the decay of the shear, and is discussed below in the
context of a low-order model system.

5. Simple low-order models for the streaming instabilities

The sequences of bifurcations described above may be partially understood by the
construction and investigation of low-order systems of ordinary differential equations
whose dependent variables represent the important features of the flows and fields.



246 M. R.E. Proctor, N. O. Weiss, D. P. Brownjohn and N. E. Hurlburt
(@)

(b) 15

0 0.05 0.10 0.15 0.20

FiGure 11. Low-order models of streaming instabilities in Boussinesq magnetoconvection (cf.
Rucklidge & Matthews 1993, 1994). (a) Bifurcation diagram, showing the transition from steady
symmetric convection to steady tilted convection (STC) to oscillatory tilted convection (OTC) and,
via a global bifurcation, to PW. Note the similarity to figure 10. (b) Bifurcation structure in the
(u, Q)-plane, showing solutions that are stable in different regions; stable PW are found throughout
the shaded region. (After Matthews ef al. 1993.)

Such models are often best obtained by means of a severe truncation of the governing
equations in some Fourier or Galerkin representation. When the underlying stability
problem cannot be solved analytically, the utility of such a scheme is reduced and direct
selection of the appropriate nonlinear terms, having regard to appropriate symmetry
considerations, becomes preferable. The method has been used with success, however,
to explain transitions in double convection with stress-free boundaries and no-flux
lateral boundary conditions (Knobloch, Weiss & Da Costa 1981; Knobloch & Proctor
1981; Knobloch, Proctor & Weiss 1992). Howard & Krishnamurti (1986) were the first
to give an analytical description of the instabilities of non-magnetic two-dimensional
Boussinesq convection coupled with horizontal streaming flows. They recognized that
the crucial ingredients in the instability were the interaction between two different
convective modes with the same horizontal wavenumber but different vertical structure;
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no shear is generated when these modes are in phase (i.e. have the same nodes in the
horizontal) but when there is a phase difference the interaction drives a shearing flow,
which then interacts with and couples together the two convective modes. The
Howard-Krishnamurti model is sixth order: the mean horizontal flow and mean
temperature profile are each represented by a single mode, while the two convective
cellular flows have two modes each. Hughes & Proctor (1990) recognized that the basic
dynamics could be explained by just three equations, and showed how to perform the
reduction when the aspect ratio is small. (This reduced description does not include
perturbations to the mean temperature, which would not significantly affect their
solutions.) These studies show clearly that a streaming instability can arise in the non-
magnetic case but the oscillatory reversals of the shear, which figure so prominently in
the numerical experiments, do not occur commonly here. In the presence of a magnetic
field, streaming is affected by the Lorentz force and takes the form of decaying Alfvén
waves rather than viscously decaying shear (Matthews et al. 1993). We can therefore
extend the Howard-Krishnamurti model by incorporating the effects of a vertical
imposed field. The resulting eleventh-order system has been derived for the Boussinesq
problem by Rucklidge & Matthews (1993, 1994); these papers are henceforth referred
to collectively as RM and we shall rely on several of their results in what follows. By
taking the limit of thin cells, RM obtain a fifth-order real system. For later convenience
we express it here in complex form.

The starting point for our model is a complexification of that in RM. To begin with,
we assume that the Boussinesq approximation holds (see e.g. Proctor & Weiss 1982).
The governing equations are then considerably simpler than those for a compressible
atmosphere, and the eigenfunctions can be expressed in terms of trigonometric
functions. Because of the assumed constancy of fluid properties in the Boussinesq
equations, there is a symmetry about the midpoint of the layer (Proctor & Weiss 1993),
so that the eigenfunctions are either even or odd about the midpoint. The extended
model then consists of an ‘even’ convective mode with e.g. temperature perturbation
Ae'*® sin nz, an ‘odd’ mode Ce'** sin 2nz, a horizontal shear flow B cos z, a mean
horizontal magnetic field G cos mz and a mean temperature perturbation E sin 27z.
Here 4 and C are complex in general while B, G and E are real. Substituting these
equations into the governing Boussinesq equations, and making the appropriate
rescalings, we obtain

A=puA+AE+iBC, (5.1)

. 1[3(1+0) _ Q
B—Z[ —Im (AC)—U(B+E§ )] (5.2)
¢= [y—mg_i—g)]c+iAB, (5.3)
E=—E—|A], (5.4)
G =3(B—G), (5.5)

where x is a measure of the supercritical Rayleigh number. An important feature of this
system is that, because of the symmetries of the modes, the quadratic terms in B do not
induce self-coupling between the convective modes (so that e.g. there is no 4B-term in
the A-equation). In consequence the equations have an invariant subspace in which
arg(C) = arg(4)+4n. It can be shown that (d/d¢)[arg(4)] = 0-in this subspace, so that
(5.1)—(5.5) can be reduced to five real equations. RM note that in an appropriate
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coordinate system we can describe solutions in this subspace as possessing point
symmetry (Proctor & Weiss 1993). This symmetry prevents the initial instability to
shear from resulting in travelling waves. The subspace can become unstable, however,
at sufficiently large 4 (Julien et al. 1993); then travelling disturbances become the norm.
A proper description of these disturbances should include other modes. However, we
do not expect these modes to be important in a stratified layer, where there is no point
symmetry to be broken.

Before showing how the above system must be modified to incorporate non-
Boussinesq effects, we summarize some of RM’s more suggestive results. They
integrated the system (5.1)—(5.5) in the real subspace for Q =4, ¢ = 0.5, { = 0.2 and
found the following bifurcation sequence, illustrated in figure 11(a). The initial
bifurcation at g = 0 is to a state with B = C = G = 0, corresponding to steady-state
convection with mirror-symmetric rolls (SS). As u is increased this state suffers a
pitchfork bifurcation to a new steady state in which all variables are now non-zero.
This corresponds to convection with steady tilted cells (STC); every other cell is now
larger than its neighbour but because of the point symmetry there is no travelling. A
further Hopf bifurcation leads to the tilt becoming vacillatory (OTC); after a gluing
bifurcation of very complex type the shear and tilt actually change sign, leading to
pulsating waves (PW) (see also Matthews et al. 1993). The corresponding ‘ unfolding
diagram’ in (u, Q)-space is given in figure 11(b), showing that PW solutions may also
arise directly at a Hopf bifurcation from the SS branch. It is to be noted that the PW
can arise by this mechanism only when the field strength represented by Q is sufficiently
strong. This is connected with the decay modes of the horizontal shear, which are real
in the kinematic limit but can be complex for larger Q, allowing the sign of the shear
to change during the motion. This corroborates the observed difference between the
non-magnetic and magnetic results described above.

How are these results to be related to the compressible results described earlier? It
turns out that we can model the effects of compressibility very simply, by noting that
the difference of parity between the convective modes in the 4 and C equations is now
broken. In consequence there is nothing on the grounds of symmetry to rule out self-
coupling terms in (5.1) and (5.3), which will now take the form

A= ... +id, BA, (5.6)
C=...+id.BC, (5.7)

where the dots denote the existing terms in (5.1)-(5.3). For weak compressibility the
other coefficients in the equations will be almost unchanged, so we can leave them as
they are, while d ,, 8. will be small. (While the stratification will in general induce other
small coupling terms, these will not introduce any effects that are not already present
in the simple model above.) The effect of these terms is to eliminate point symmetry
when B is non-zero, so any tilt of the convection cells is accompanied by secular change
of the phases of 4 and C, leading to drift of the pattern; although the bifurcation from
the SS solution is still of pitchfork type, the bifurcated pattern has the same symmetries
as the travelling waves (TW) that can arise, through a primary Hopf bifurcation, in
other parameter ranges (see Part 1). It is easy to see that we can find bifurcated
solutions with 4, C oc e'* and B, E, G independent of time.

In general the dependence of w on the parameters is very messy, but in the special
case 0, =0, we can make the substitutions 4 = 4 45 C= Ce4B and then
(5.1)-(5.5) are recovered with A4, C replacing 4, C. Thus the phase speed of the pattern
is Bd 4 and the bifurcation structure is identical with that shown in figure 11, except that
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the solution branches now have a different interpretation. Because of the lack of
up-down symmetry the pattern drifts with phase velocity 8, B/k when the streaming
flow is present. Thus the STC solutions, which were steady in the Boussinesq case, now
travel at constant speed ; moreover, they have the same symmetries as the travelling
wave (TW) solutions that arise by a quite different mechanism, involving a Hopf
bifurcation from the trivial solution, in both the compressible and Boussinesq
problems when ¢ < 1 and Q is sufficiently large. By the same token the OTC solutions
now become quasi-periodic modulated waves (MW), with a periodic phase velocity.
After the transition that gives pulsating waves in the Boussinesq case, the left-right
symmetry is restored; so there is no preferred direction even when 8, % 0, and the
realized solutions exhibit alternating shear, with the convection cells being advected
alternately in opposite directions as B changes sign.

When §, & J, we cannot precisely identify the bifurcations in the two cases, but it
is clear that the transitions from steady-state convection through travelling waves to
modulated waves, being standard codimension-one bifurcations, will not be affected.
The very complex transition to PW solutions described by RM, which depends on the
point symmetry that is generically destroyed in the compressible case, may require a
different interpretation in this case, but the general notion of a gluing bifurcation
clearly remains valid. We may therefore regard the observed transitions as being
adequately modelled, and indeed the sequence of bifurcations deduced from the
numerical experiments in figure 10 is identical with that in figure 11(a) except that the
bifurcation to TW is subcritical in the former case. There is a strong case for further
investigation of the model when §, =+ §,. to discover other, less accessible, transitions
that may be hiding in the full compressible dynamics, though such a discussion lies
outside the scope of this paper, which is concerned with the interpretation of numerical
experiments. It is nonetheless gratifying that the simple adjustment to RM’s existing
model that we exhibit here can reproduce the changes in the symmetries of the solution
at bifurcation points. The utility of having such a model to hand is that it can be
exhaustively investigated. Previous comparisons of low-order models with the solutions
of the full p.d.e.’s have always yielded mutually useful information, and the present
case is no exception.

There is evidence from some of the runs reported on above that the period of the
pulsations can be very long in the weak-field regime, with long intervals when the flow
is almost horizontal. This is presumably associated with a discrepancy between the
(rapid) time for growth of cellular convection (O(x™') in our model) and that of the
response of the horizontal flow, which increases as Q decreases. The observed
intermittency is due to the latter time being long compared with x™': as Q increases the
enhanced restoring force reduces the discrepancy. All this is consistent with the
numerical experiments, but it should be noted that the intermittency here differs from
that of Hughes & Proctor (1990) who concentrated on the case where ' is much
larger than other timescales.

6. Discussion

In this paper we have conducted a thorough survey of the secondary instabilities that
lead to time-dependent magnetoconvection. While the results for wider boxes yield few
surprises, the small aspect ratio calculations have allowed us to investigate the
phenomenon of pulsating waves, which are dramatically different from the usual
periodic solutions to be found near onset. We have clarified the mechanisms by which
these waves arise, and related them to the underlying symmetries of the problem. In
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this way, they can be seen as exemplars of a type of motion that can occur in many
physical systems under the correct conditions. Although the bifurcation sequence that
ultimately results in pulsating waves is extremely complex, it can be understood by
reference to a truncated low-order system that has been extensively investigated
elsewhere. This allows the gaps in the bifurcation sequence to be filled, especially in the
difficult region where the modulated waves give way to pulsating waves. We have
shown how even a weak imposed field can make possible the crucial transition to
oscillatory shear that is the hallmark of the pulsating wave; this rather surprising effect
justifies our consideration of the weak-field regime. Our runs have all made use of the
‘illustrative’ magnetic boundary condition B, = 0 on the horizontal boundaries. These
conditions have been almost universally employed in astrophysically motivated studies
of magnetoconvection, as they make as few assumptions as possible about conditions
outside the layer. One might alternatively have used ‘frozen-field’ conditions (no
boundary footpoint motion) or matched the field to an external potential field. In the
former case, the effect of the curvature forces on the pulsations would be much
stronger, and so there would certainly be quantitative differences in the parameter
values bounding the various regimes, though the symmetries of the problem would not
change and so we can see no new phenomena appearing. The potential field is in some
sense intermediate between the perfectly conducting and vertical field cases. All things
considered, we believe that our model is typical of behaviour in a variety of cases.

In the parameter ranges selected, we have only been able to find coherent streaming
instabilities for rather narrow computational boxes. It is known, however, that for
strong fields convection prefers these small aspect ratios (see e.g. Proctor 1986), and the
importance of the streaming flows is probably not associated with the fact that the box
is constrained to be narrow, but with the narrowness itself. The study of the onset of
convection for large values of O in wide boxes has not, curiously, been attempted to
date, but it is intended to attack the problem soon in the full three-dimensional case.
In any event, the interest of the problem extends beyond magnetoconvection, since
modulated waves and pulsating waves that are associated with streaming arise in so
many other contexts.

Of course, all these transitions occur in a constrained two-dimensional geometry.
Far more complex phenomena are to be expected in a fully three-dimensional
computation. Numerical experiments on three-dimensional compressible magneto-
convection are at present being carried out (Matthews 1993; Matthews et al. 19945).
In the weak-field regime two-dimensional rolls are indeed stable near the initial
bifurcation. These computations have already revealed a fascinating new range of
solutions. In particular, streaming instabilities develop into ‘alternating pulsating
waves’, in which the direction of streaming alternates between two orthogonal
directions (Matthews et al. 1994 a). The bifurcations that lead to these solutions have
not yet been identified, but are clearly complicated. It is thus encouraging that,
although our two-dimensional solutions are highly over-simplified, they do give an idea
of the types of flows to be expected in three-dimensional calculations.

We gratefully acknowledge helpful conversations with Gregory Ginet, Edgar
Knobloch, Paul Matthews and Alastair Rucklidge, as well as constructive comments
from the referees. This work was supported by the UK SERC.
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Appendix. Summary of numerical results

In this appendix we list the different series of runs that have been carried out, with
a brief qualitative description of the solutions found. Further details are given in the

A=1
R = 8000
£ =32, 64, 128, 256 (SW); § = 512 (PW); 4 = 1024, 2048 (MW);
B = 4096, 8192, 2! (PW); 4 = 2% (TW).
Q =111.125
R = 4900, 5000, 5100 (SS); R = 5000, 5100 (TW); R = 5200, 5300, 5400, 5600 (MW);
R = 5500 (aperiodic); R = 6000, 7000 (PW); R = 8000 (transient PW, MW);

~

R =10000 ('gransient PW, aperiodic).

f = 2% (kinematic)
R = 3160, 3200, 3300 (TW); R = 3350, 3400, 3500, 4000, 6000 (MW):
R = 8000, 10000 (TW); R = 12000, 16000 (MW).
A

=2
R=1750
Q = 30 (transient SS, TW); Q = 1 (SS or TW).
R = 2000
£ =128, 256 (SW); § = 512, 1024 (transient SS, TW);
f = 2048, 4096, 8192, 214, 215, 220 (SS),
R = 4000
B =128 (SW); j = 256 (transient SS, aperiodic).
R = 8000
/J;= 32, 128 (aperiodic); ﬁA= 256, 512, 1024 (transient SS, aperiodic);
£ = 2048, 8192, 25, 220 (SS).

= 2048
R = 2000, 4000, 8000, 16000, 32000 (SS); R = 64000 (PW).
A

R)

4
= 8192

R =2000 (SS); R = 4000 (TW); R = 8000 (TW, MW and 4-roll SS).
R = 8000
B =32, 128, 512 (aperiodic); 4 = 2048, 8192, 2'%, 22° (TW, MW and 4-roll SS).

=
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